Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1132825, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090809

RESUMO

Introduction: Physical exercise has beneficial effects by providing neuroprotective and anti-inflammatory responses to AD. Most studies, however, have been conducted with aerobic exercises, and few have investigated the effects of other modalities that also show positive effects on AD, such as resistance exercise (RE). In addition to its benefits in developing muscle strength, balance and muscular endurance favoring improvements in the quality of life of the elderly, RE reduces amyloid load and local inflammation, promotes memory and cognitive improvements, and protects the cortex and hippocampus from the degeneration that occurs in AD. Similar to AD patients, double-transgenic APPswe/PS1dE9 (APP/PS1) mice exhibit Αß plaques in the cortex and hippocampus, hyperlocomotion, memory deficits, and exacerbated inflammatory response. Therefore, the aim of this study was to investigate the effects of 4 weeks of RE intermittent training on the prevention and recovery from these AD-related neuropathological conditions in APP/PS1 mice. Methods: For this purpose, 6-7-month-old male APP/PS1 transgenic mice and their littermates, negative for the mutations (CTRL), were distributed into three groups: CTRL, APP/PS1, APP/PS1+RE. RE training lasted four weeks and, at the end of the program, the animals were tested in the open field test for locomotor activity and in the object recognition test for recognition memory evaluation. The brains were collected for immunohistochemical analysis of Aß plaques and microglia, and blood was collected for plasma corticosterone by ELISA assay. Results: APP/PS1 transgenic sedentary mice showed increased hippocampal Aß plaques and higher plasma corticosterone levels, as well as hyperlocomotion and reduced central crossings in the open field test, compared to APP/PS1 exercised and control animals. The intermittent program of RE was able to recover the behavioral, corticosterone and Aß alterations to the CTRL levels. In addition, the RE protocol increased the number of microglial cells in the hippocampus of APP/PS1 mice. Despite these alterations, no memory impairment was observed in APP/PS1 mice in the novel object recognition test. Discussion: Altogether, the present results suggest that RE plays a role in alleviating AD symptoms, and highlight the beneficial effects of RE training as a complementary treatment for AD.

2.
Neuropharmacology ; 226: 109371, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36502867

RESUMO

About 10 million new cases of dementia develop worldwide each year, of which up to 70% are attributable to Alzheimer's disease (AD). In addition to the widely known symptoms of memory loss and cognitive impairment, AD patients frequently develop non-cognitive symptoms, referred to as behavioral and psychological symptoms of dementia (BPSDs). Sleep disorders are often associated with AD, but mood alterations, notably depression and apathy, comprise the most frequent class of BPSDs. BPSDs negatively affect the lives of AD patients and their caregivers, and have a significant impact on public health systems and the economy. Because treatments currently available for AD are not disease-modifying and mainly aim to ameliorate some of the cognitive symptoms, elucidating the mechanisms underlying mood alterations and other BPSDs in AD may reveal novel avenues for progress in AD therapy. Purinergic signaling is implicated in the pathophysiology of several central nervous system (CNS) disorders, such as AD, depression and sleep disorders. Here, we review recent findings indicating that purinergic receptors, mainly the A1, A2A, and P2X7 subtypes, are associated with the development/progression of AD. Current evidence suggests that targeting purinergic signaling may represent a promising therapeutic approach in AD and related conditions. This article is part of the Special Issue on "Purinergic Signaling: 50 years".


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Transtornos do Sono-Vigília , Humanos , Doença de Alzheimer/psicologia , Testes Neuropsicológicos , Sintomas Comportamentais/etiologia , Transtornos do Sono-Vigília/etiologia
3.
Stem Cell Rev Rep ; 18(2): 781-791, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34997526

RESUMO

Alzheimer's disease (AD) is a severe disabling condition with no cure currently available, which accounts for 60-70% of all dementia cases worldwide. Therefore, the investigation of possible therapeutic strategies for AD is necessary. To this end, animal models corresponding to the main aspects of AD in humans have been widely used. Similar to AD patients, the double transgenic APPswe/PS1dE9 (APP/PS1) mice show cognitive deficits, hyperlocomotion, amyloid-ß (Αß) plaques in the cortex and hippocampus, and exacerbated inflammatory responses. Recent studies have shown that these neuropathological features could be reversed by stem cell transplantation. However, the effects induced by neural (NSC) and mesenchymal (MSC) stem cells has never been compared in an AD animal model. Therefore, the present study aimed to investigate whether transplantation of NSC or MSC into the hippocampus of APP/PS1 mice reverses AD-induced pathological alterations, evaluated by the locomotor activity (open field test), short- and long-term memory (object recognition) tests, Αß plaques (6-E10), microglia distribution (Iba-1), M1 (iNOS) and M2 (ARG-1) microglial phenotype frequencies. NSC and MSC engraftment reduced the number of Αß plaques and produced an increase in M2 microglia polarization in the hippocampus of APP/PS1 mice, suggesting an anti-inflammatory effect of stem cell transplantation. NSC also reversed the hyperlocomotor activity and increased the number of microglia in the hippocampus of APP/PS1 mice. No impairment of short or long-term memory was observed in APP/PS1 mice. Overall, this study highlights the potential beneficial effects of transplanting NSC or MSC for AD treatment.


Assuntos
Doença de Alzheimer , Células-Tronco Mesenquimais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Placa Amiloide/patologia
5.
Mol Psychiatry ; 26(6): 2633-2650, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32350390

RESUMO

Calcium, the most versatile second messenger, regulates essential biology including crucial cellular events in embryogenesis. We investigated impacts of calcium channels and purinoceptors on neuronal differentiation of normal mouse embryonic stem cells (ESCs), with outcomes being compared to those of in vitro models of Huntington's disease (HD). Intracellular calcium oscillations tracked via real-time fluorescence and luminescence microscopy revealed a significant correlation between calcium transient activity and rhythmic proneuronal transcription factor expression in ESCs stably expressing ASCL-1 or neurogenin-2 promoters fused to luciferase reporter genes. We uncovered that pharmacological manipulation of L-type voltage-gated calcium channels (VGCCs) and purinoceptors induced a two-step process of neuronal differentiation. Specifically, L-type calcium channel-mediated augmentation of spike-like calcium oscillations first promoted stable expression of ASCL-1 in differentiating ESCs, which following P2Y2 purinoceptor activation matured into GABAergic neurons. By contrast, there was neither spike-like calcium oscillations nor responsive P2Y2 receptors in HD-modeling stem cells in vitro. The data shed new light on mechanisms underlying neurogenesis of inhibitory neurons. Moreover, our approach may be tailored to identify pathogenic triggers of other developmental neurological disorders for devising targeted therapies.


Assuntos
Doença de Huntington , Células-Tronco Neurais , Trifosfato de Adenosina , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Neurônios GABAérgicos/metabolismo , Doença de Huntington/genética , Camundongos , Células-Tronco Neurais/metabolismo , Neurogênese
6.
Mol Psychiatry ; 26(4): 1044-1059, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33328588

RESUMO

Scientists and health professionals are exhaustively trying to contain the coronavirus disease 2019 (COVID-19) pandemic by elucidating viral invasion mechanisms, possible drugs to prevent viral infection/replication, and health cares to minimize individual exposure. Although neurological symptoms are being reported worldwide, neural acute and long-term consequences of SARS-CoV-2 are still unknown. COVID-19 complications are associated with exacerbated immunoinflammatory responses to SARS-CoV-2 invasion. In this scenario, pro-inflammatory factors are intensely released into the bloodstream, causing the so-called "cytokine storm". Both pro-inflammatory factors and viruses may cross the blood-brain barrier and enter the central nervous system, activating neuroinflammatory responses accompanied by hemorrhagic lesions and neuronal impairment, which are largely described processes in psychiatric disorders and neurodegenerative diseases. Therefore, SARS-CoV-2 infection could trigger and/or worse brain diseases. Moreover, patients with central nervous system disorders associated to neuroimmune activation (e.g. depression, Parkinson's and Alzheimer's disease) may present increased susceptibility to SARS-CoV-2 infection and/or achieve severe conditions. Elevated levels of extracellular ATP induced by SARS-CoV-2 infection may trigger hyperactivation of P2X7 receptors leading to NLRP3 inflammasome stimulation as a key mediator of neuroinvasion and consequent neuroinflammatory processes, as observed in psychiatric disorders and neurodegenerative diseases. In this context, P2X7 receptor antagonism could be a promising strategy to prevent or treat neurological complications in COVID-19 patients.


Assuntos
Encefalopatias/complicações , Encefalopatias/patologia , COVID-19/complicações , COVID-19/patologia , Neuroimunomodulação , Receptores Purinérgicos P2X7/metabolismo , SARS-CoV-2/patogenicidade , Encefalopatias/tratamento farmacológico , Encefalopatias/metabolismo , COVID-19/imunologia , COVID-19/metabolismo , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Pandemias , SARS-CoV-2/imunologia
7.
Neurosci Bull ; 36(11): 1299-1314, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33026587

RESUMO

Huntington's (HD) and Parkinson's diseases (PD) are neurodegenerative disorders caused by the death of GABAergic and dopaminergic neurons in the basal ganglia leading to hyperkinetic and hypokinetic symptoms, respectively. We review here the participation of purinergic receptors through intracellular Ca2+ signaling in these neurodegenerative diseases. The adenosine A2A receptor stimulates striatopallidal GABAergic neurons, resulting in inhibitory actions on GABAergic neurons of the globus pallidus. A2A and dopamine D2 receptors form functional heteromeric complexes inducing allosteric inhibition, and A2A receptor activation results in motor inhibition. Furthermore, the A2A receptor physically and functionally interacts with glutamate receptors, mainly with the mGlu5 receptor subtype. This interaction facilitates glutamate release, resulting in NMDA glutamate receptor activation and an increase of Ca2+ influx. P2X7 receptor activation also promotes glutamate release and neuronal damage. Thus, modulation of purinergic receptor activity, such as A2A and P2X7 receptors, and subsequent aberrant Ca2+ signaling, might present interesting therapeutic potential for HD and PD.


Assuntos
Gânglios da Base/fisiopatologia , Sinalização do Cálcio , Doença de Huntington , Doença de Parkinson , Receptores Purinérgicos/metabolismo , Gânglios da Base/metabolismo , Neurônios GABAérgicos , Globo Pálido/metabolismo , Humanos , Doença de Huntington/fisiopatologia , Doença de Parkinson/fisiopatologia , Receptor A2A de Adenosina , Receptores de Dopamina D2/metabolismo , Receptores de Glutamato , Receptores Purinérgicos P2X7
8.
Front Mol Neurosci ; 13: 124, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848594

RESUMO

The P2X7 receptor is a cation channel activated by high concentrations of adenosine triphosphate (ATP). Upon long-term activation, it complexes with membrane proteins forming a wide pore that leads to cell death and increased release of ATP into the extracellular milieu. The P2X7 receptor is widely expressed in the CNS, such as frontal cortex, hippocampus, amygdala and striatum, regions involved in neurodegenerative diseases and psychiatric disorders. Despite P2X7 receptor functions in glial cells have been extensively studied, the existence and roles of this receptor in neurons are still controversially discussed. Regardless, P2X7 receptors mediate several processes observed in neuropsychiatric disorders and brain tumors, such as activation of neuroinflammatory response, stimulation of glutamate release and neuroplasticity impairment. Moreover, P2X7 receptor gene polymorphisms have been associated to depression, and isoforms of P2X7 receptors are implicated in neuropsychiatric diseases. In view of that, the P2X7 receptor has been proposed to be a potential target for therapeutic intervention in brain diseases. This review discusses the molecular mechanisms underlying P2X7 receptor-mediated signaling in neurodegenerative diseases, psychiatric disorders, and brain tumors. In addition, it highlights the recent advances in the development of P2X7 receptor antagonists that are able of penetrating the central nervous system.

9.
PeerJ ; 7: e7834, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31656696

RESUMO

Purinergic receptors, especially P2RX, are associated to the severity of symptoms in patients suffering from depressive and bipolar disorders, and genetic deletion or pharmacological blockade of P2RX7 induces antidepressant-like effect in preclinical models. However, there is scarce evidence about the alterations in P2RX7 or P2RX4 levels and in behavioral consequences induced by previous exposure to stress, a major risk factor for depression in humans. In the present study, we evaluated the effect of imipramine (IMI) on P2RX7 and P2RX4 levels in dorsal and ventral hippocampus as well as in the frontal cortex of rats submitted to the pretest session of learned helplessness (LH) paradigm. Repeated, but not acute administration of IMI (15 mg/kg ip) reduced the levels of both P2RX7 and P2RX4 in the ventral, but not in dorsal hippocampus or frontal cortex. In addition, we tested the effect of P2RX7/P2RX4 antagonist brilliant blue G (BBG: 25 or 50 mg/kg ip) on the LH paradigm. We observed that repeated (7 days) but not acute (1 day) treatment with BBG (50 mg) reduced the number of failures to escape the shocks in the test session, a parameter mimicked by the same regimen of IMI treatment. Taken together, our data indicates that pharmacological blockade or decrease in the expression of P2RX7 is associated to the antidepressant-like behavior observed in the LH paradigm after repeated drug administration.

10.
Int J Mol Sci ; 20(11)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174279

RESUMO

Stress exposure is considered to be the main environmental cause associated with the development of depression. Due to the limitations of currently available antidepressants, a search for new pharmacological targets for treatment of depression is required. Recent studies suggest that adenosine triphosphate (ATP)-mediated signaling through the P2X7 receptor (P2X7R) might play a prominent role in regulating depression-related pathology, such as synaptic plasticity, neuronal degeneration, as well as changes in cognitive and behavioral functions. P2X7R is an ATP-gated cation channel localized in different cell types in the central nervous system (CNS), playing a crucial role in neuron-glia signaling. P2X7R may modulate the release of several neurotransmitters, including monoamines, nitric oxide (NO) and glutamate. Moreover, P2X7R stimulation in microglia modulates the innate immune response by activating the NLR family pyrin domain containing 3 (NLRP3) inflammasome, consistent with the neuroimmune hypothesis of MDD. Importantly, blockade of P2X7R leads to antidepressant-like effects in different animal models, which corroborates the findings that the gene encoding for the P2X7R is located in a susceptibility locus of relevance to depression in humans. This review will discuss recent findings linked to the P2X7R involvement in stress and MDD neuropathophysiology, with special emphasis on neurochemical, neuroimmune, and neuroplastic mechanisms.


Assuntos
Depressão/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais , Estresse Psicológico/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neurotransmissores/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-30991078

RESUMO

Nitric oxide (NO) triggers escape reactions in the dorsal periaqueductal gray matter (dPAG), a core structure mediating panic-associated response, and decreases the release of BDNF in vitro. BDNF mediates the panicolytic effect induced by antidepressant drugs and produces these effects per se when injected into the dPAG. Based on these findings, we hypothesize that nitric oxide synthase (NOS) inhibitors would have panicolytic properties associated with increased BDNF signaling in the dPAG. We observed that the repeated (7 days), but not acute (1 day), systemic administration of the NOS inhibitor aminoguanidine (AMG; 15 mg/kg/day) increased the latency to escape from the open arm of the elevated T-maze (ETM) and inhibited the number of jumps in hypoxia-induced escape reaction in rats, suggesting a panicolytic-like effect. Repeated, but not acute, AMG administration (15 mg/kg) also decreased nitrite levels and increased TRKB phosphorylation at residues Y706/7 in the dPAG. Notwithstanding the lack of AMG effect on total BDNF levels in this structure, the microinjection of the TRK antagonist K252a into the dPAG blocked the anti-escape effect of this drug in the ETM. Taken together our data suggest that the inhibition of NO production by AMG increases the levels of pTRKB, which is required for the panicolytic-like effect observed.


Assuntos
Ansiolíticos/farmacologia , Guanidinas/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Pânico/efeitos dos fármacos , Receptor trkB/efeitos dos fármacos , Animais , Western Blotting , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Reação de Fuga/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Nitritos/metabolismo , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/fisiologia , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Receptor trkB/antagonistas & inibidores , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Horm Behav ; 100: 69-80, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29548783

RESUMO

Evidences suggest the contributive role of early-life stress (ELS) to affective and anxiety disorders. Chronic exposure to the same stressor may generate habituation, while the exposure to different and repeated stressors gradually promotes maladaptive plasticity. Therefore, to further understand the effects of heterotypic stressors during early life period, male Wistar rat pups (P1-P21) were exposed to Multimodal ELS paradigm. Results indicate pups did not habituate to multimodal ELS and neonates respond to both physical and psychogenic stressors. Adult rats that underwent ELS protocol showed significant lower sucrose intake, decreased latency to immobility in the forced swim test and increased latency to light compartment in the light-dark test when compared to control group. Although it has been shown that ELS-induced changes in hippocampus can be used as biomarkers, multimodal ELS did not significantly alter BDNF, Tyrosine Kinase B (TrkB) receptor expression or neurogenesis in the hippocampus. Taken together, these findings indicate that multimodal ELS protocol can be an interesting experimental model for understanding long-term psychiatric disorders associated with stress. Indeed, our data with neurogenesis, BDNF and TrkB, and conflicting data from the literature, suggest that additional studies on synaptic plasticity/intracellular cascades would help to detect the underlying mechanisms.


Assuntos
Transtornos Mentais/etiologia , Efeitos Tardios da Exposição Pré-Natal , Estresse Psicológico/complicações , Animais , Animais Recém-Nascidos , Transtornos de Ansiedade/etiologia , Transtornos de Ansiedade/metabolismo , Transtornos de Ansiedade/fisiopatologia , Corticosterona/metabolismo , Transtorno Depressivo/etiologia , Transtorno Depressivo/metabolismo , Transtorno Depressivo/fisiopatologia , Feminino , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisário/crescimento & desenvolvimento , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Transtornos Mentais/metabolismo , Transtornos Mentais/fisiopatologia , Neurogênese/fisiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Ratos , Ratos Wistar , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Natação/fisiologia , Natação/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...